Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(39): e2203193, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971192

RESUMO

Porous structures have been utilized in tactile sensors to improve sensitivity owing to their excellent deformability. Recently, tactile sensors using porous structures have been used in practical applications, such as bio-signal monitoring. However, highly sensitive responses are limited to the low-pressure range, and their sensitivity significantly decreases in a higher-pressure range. Several approaches for developing tactile sensors with high sensitivity overing a wide pressure range have been proposed; however, achieving high sensitivity and wide sensing range remains a crucial challenge. This report presents a carbon nanotube (CNT)-coated CNT-polydimethylsiloxane (PDMS) composite having dual-scale pores for tactile sensors with high sensitivity over a wide pressure range. The porous polymer frame formed with dense pores of dual sizes facilitates the closure of large and small pores at low and high pressures, respectively. This results in an apparent increase in the number of contact points between the CNT-CNT at the pores even under a wide pressure range. Furthermore, the piezoresistivity of the CNT-PDMS composite contributes to achieving a high sensitivity of the tactile sensor over a wide pressure range. Based on these mechanisms, various human movements over a broad pressure spectrum are monitored to investigate the practical usefulness of the sensor.


Assuntos
Nanotubos de Carbono , Dimetilpolisiloxanos , Humanos , Nanotubos de Carbono/química , Porosidade , Tato
2.
Nanotechnology ; 32(35)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038882

RESUMO

While there have been remarkable improvements in the fabrication of suspended nanowires, placing a single nanowire at the desired location remains to be a challenging task. In this study, a simple method is proposed to fabricate suspended nanowires at desired locations using an electrospinning process and a designed microstructure. Using electrospun polymer fibers on the designed microstructure as a sacrificial template, various materials are deposited on it, and the electrospun fibers are selectively removed, leaving only nanowires of the deposited material. After the polymer fibers are removed, the remaining metal fibers agglomerate into a single nanowire. Throughout this process, including the removal of the polymer fibers, the samples are not exposed to high temperatures or chemicals, thereby allowing the formation of nanowires without oxidation or contamination. The diameter of the nanowire can be controlled in the electrospinning process, and a suspended Pd nanowire with a minimum diameter of 100 nm is fabricated. Additionally, a suspended single Pd nanowire-based H2gas sensor fabricated using the proposed process exhibits a highly sensitive response to H2gas.

3.
Adv Mater ; 33(47): e2005902, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33887803

RESUMO

Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin. Here, important advances in flexible tactile sensors over recent years are summarized, from sensor designs to system-level applications. This review focuses on the representative strategies based on design and material configurations for improving key performance parameters including sensitivity, detection range/linearity, response time/hysteresis, spatial resolution/crosstalk, multidirectional force detection, and insensitivity to other stimuli. System-level integration for practical applications beyond conceptual prototypes and promising applications, such as artificial electronic skin for robotics and prosthetics, wearable controllers for electronics, and bidirectional communication tools, are also discussed. Finally, perspectives on issues regarding further advances are provided.


Assuntos
Tato
4.
ACS Appl Mater Interfaces ; 13(10): 12259-12267, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33683114

RESUMO

Tactile sensor arrays have attracted considerable attention for their use in diverse applications, such as advanced robotics and interactive human-machine interfaces. However, conventional tactile sensor arrays suffer from electrical crosstalk caused by current leakages between the tactile cells. The approaches that have been proposed thus far to overcome this issue require complex rectifier circuits or a serial fabrication process. This article reports a flexible tactile sensor array fabricated through a batch process using a mesh. A carbon nanotube-polydimethylsiloxane composite is used to form an array of sensing cells in the mesh through a simple "dip-coating" process and is cured into a concave shape. The contact area between the electrode and the composite changes significantly under pressure, resulting in an excellent sensitivity (5.61 kPa-1) over a wide range of pressure up to 600 kPa. The mesh separates the composite into the arranged sensing cells to prevent the electrical connection between adjacent cells and simultaneously connects each cell mechanically. Additionally, the sensor shows superior durability compared with previously reported tactile sensors because the mesh acts as a support beam. Furthermore, the tactile sensor array is successfully utilized as a Braille reader via information processing based on machine learning.


Assuntos
Dimetilpolisiloxanos/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais , Desenho de Equipamento , Humanos , Pressão , Tato
5.
Nanotechnology ; 30(35): 355504, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100747

RESUMO

Two-dimensional (2D) nanomaterials have been extensively explored as promising candidates for gas sensing due to their high surface-to-volume ratio. Among many 2D nanomaterials, molybdenum disulfide (MoS2) is known to be functional in detecting harmful gases at room temperature; therefore, it has been actively studied as a gas sensing material. However, there has been a limitation in recovering the original signal from reacted MoS2 after exposure to the target gas. This work demonstrates the recovery of the initial resistance of reacted chemical vapor deposition-grown MoS2 by illuminating it with a UV light-emitting diode (LED). A novel mechanism involving photo-generated electron-hole pairs in MoS2 is proposed and experimentally verified. The fabricated sensor detects nitrogen dioxide (NO2) and distinguishes between concentrations from 1 to 10 ppm with the proposed recovery process. Reversible detection after repeated exposure to 5 ppm NO2 over eight cycles is achieved through UV-LED illumination for a short time during the recovery process, while the identical sensor without UV illumination shows a transitional response at each cycle. To apply a low cost gas sensing solution at room temperature, visible light LEDs are also used to recover the resistance of the reacted MoS2.

6.
ACS Appl Mater Interfaces ; 11(22): 20491-20499, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31066269

RESUMO

Ionization-based volatile organic compound (VOC) sensors that use photons or electrons operating at room temperature have attracted considerable attention as a promising alternative to conventional metal oxide-based sensors that require high temperature for sensing function. However, the photoionization sensors cannot ionize many gas species for their limited photon energy, and field emission-based ionization sensors that rely on the breakdown voltage of specific gas species in a pure state may not tell different concentration. This work demonstrates the detection of VOCs using impact ionization induced by accelerated photoelectrons. Although the photoelectrons emitted by relatively low photon energy typically have insufficient kinetic energy to cause impact ionization, in this approach, they are accelerated between microgap electrodes to enhance their kinetic energy such that the impact ionization of VOCs can be achieved. The demonstrated gas sensor sensitively detects toluene concentration in a wide range from 1000 ppm to 100 ppb with fast response and recovery time at room temperature. Additionally, diverse VOC species including benzene, p-xylene, and even acetylene with high ionization energy can be detected. The proposed method could be a viable solution for VOC sensors with low cost, scalable producibility, and high performance.

7.
ACS Appl Mater Interfaces ; 11(20): 18617-18625, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31018637

RESUMO

Micro-/nanoelectromechanical (MEM/NEM) switches have been extensively studied to address the limitations of transistors, such as the increased standby power consumption and performance dependence on temperature and radiation. However, their lifetimes are limited owing to the degradation of the contact surfaces. Even though several materials and structural designs have been recently developed to improve the lifetime, the production of a microswitch that is compatible with a complementary metal-oxide semiconductor (CMOS) with a long lifetime remains a significant challenge. We demonstrate a vertically actuated MEM switch with extremely high reliability by integrating a carbon nanotube (CNT) network on a gold electrode as the contact material using a low-temperature, CMOS-compatible solution process. In addition to their outstanding mechanical and electrical properties of CNTs, their deformability dramatically increases the effective contact area of the switch, thus resulting in the extension of the lifetime. The CNT-coated MEM switch exhibits a lifetime that is more than 7 × 108 cycles when operated in hot-switching conditions, which is 1.9 × 104 times longer than that of a control device without CNTs. The switch also shows an excellent switching performance, including a low electrical resistance, high on/off ratio, and an extremely small off-state current.

8.
Nanotechnology ; 30(27): 275401, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836339

RESUMO

We present a triboelectric energy harvester fabricated with a simple electrospinning process of polyvinylidene fluoride/polyurethane polymers on conductive fabric. This electrospinning process provides higher electrical power output and hydrophobicity driven humidity resistance compared to flat polymer energy harvesters. By using conductive fabric as collector and electrode, the device could retain air permeability and flexibility. The triboelectric energy harvester exhibits a high open-circuit voltage of 45.1 V (at a compressive contact force of 20 N and relative humidity (RH) of 20%), humidity resistance (maintains about 40% of the open-circuit voltage at RH of 80%) and air permeability without deteriorating the air permeability of the fabric. Its durability was tested and shows no significant degradation of electrical output throughout 324,000 cycles of operation. This work suggests an approach for human energy harvesting in textile form with electrospun nanofibers as the contact surfaces of a triboelectric energy harvester.

9.
Nanotechnology ; 30(21): 215501, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30721895

RESUMO

The functionalization of graphene with organic molecules is beneficial for the realization of high-performance graphene sensors because functionalization can provide enhanced functionalities beyond the properties of pristine graphene. Although various types of sensors based on organic-graphene hybrids have been developed, the functionalization processes have poor thickness-controllability/reliability or require post-processing, and sensor applications rely on conventional, rigid substrates such as SiO2/Si. Here, a flexible and transparent metalloporphyrin (MPP)-graphene hybrid for sensitive UV detection and chemical sensing is demonstrated. MPP, which provides strong light absorption, redox chemistry, and catalytic activity, is simply deposited onto graphene via one-step evaporation. Optical and electronic characterizations confirm that the graphene is successfully functionalized by MPP while maintaining its outstanding electronic properties. The MPP-functionalization greatly improves the photo- and chemical-sensing performances of the graphene, resulting in over 200% enhanced sensitivities for both UV light (365 nm) and toluene. Simultaneously, the MPP-graphene sensor exhibits no considerable change in electrical resistance under bending conditions, and remarkable optical transmittance in the visible range. On the basis of the excellent performances of the MPP-graphene hybrid, including high sensitivities, flexibility, transparency, and the ease and cost-effectiveness of the MPP-functionalization, it will be a promising candidate for flexible and transparent sensor applications.

10.
Small ; 15(12): e1805120, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30748123

RESUMO

Although there have been remarkable improvements in stretchable strain sensors, the development of strain sensors with scalable fabrication techniques and which both high sensitivity and stretchability simultaneously is still challenging. In this work, a stretchable strain sensor based on overlapped carbon nanotube (CNT) bundles coupled with a silicone elastomer is presented. The strain sensor with overlapped CNTs is prepared by synthesizing line-patterned vertically aligned CNT bundles and rolling and transferring them to the silicone elastomer. With the sliding and disconnection of the overlapped CNTs, the strain sensor performs excellently with a broad sensing range (≥145% strain), ultrahigh sensitivity (gauge factor of 42 300 at a strain of 125-145%), high repeatability, and durability. The performance of the sensor is also tunable by controlling the overlapped area of CNT bundles. Detailed mechanisms of the sensor and its applications in human motion detection are also further investigated. With the novel structure and mechanism, the sensor can detect a wide range of strains with high sensitivity, demonstrating the potential for numerous applications including wearable healthcare devices.


Assuntos
Nanotubos de Carbono/química , Estresse Mecânico , Humanos , Movimento (Física) , Dispositivos Eletrônicos Vestíveis
11.
Nanotechnology ; 29(5): 055501, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29219849

RESUMO

We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

12.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544754

RESUMO

Low-dimensional carbon materials, such as semiconducting carbon nanotubes (CNTs), conducting graphene, and their hybrids, are of great interest as promising candidates for flexible, foldable, and transparent electronics. However, the development of highly photoresponsive, flexible, and transparent optoelectronics still remains limited due to their low absorbance and fast recombination rate of photoexcited charges, despite the considerable potential of photodetectors for future wearable and foldable devices. This work demonstrates a heterogeneous, all-carbon photodetector composed of graphene electrodes and porphyrin-interfaced single-walled CNTs (SWNTs) channel, exhibiting high photoresponse, flexibility, and full transparency across the device. The porphyrin molecules generate and transfer photoexcited holes to the SWNTs even under weak white light, resulting in significant improvement of photoresponsivity from negligible to 1.6 × 10-2 A W-1 . Simultaneously, the photodetector exhibits high flexibility allowing stable light detection under ≈50% strain (i.e., a bending radius of ≈350 µm), and retaining a sufficient transparency of ≈80% at 550 nm. Experimental demonstrations as a wearable sunlight sensor highlight the utility of the photodetector that can be conformally mounted on human skin and other curved surfaces without any mechanical and optical constraints. The heterogeneous integration of porphyrin-SWNT-graphene may provide a viable route to produce invisible, high-performance optoelectronic systems.

13.
Nanotechnology ; 27(20): 205502, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27071515

RESUMO

A novel carbon nanotube (CNT)-based flexible strain sensor with the highest gauge factor of 4739 is presented. CNT-to-CNT contacts are fabricated on a pair of silicon electrodes fixed on a PDMS specimen for both flexibility and electrical connection. The strain is detected by the resistance change between facing CNT bundles. The proposed approach could be applied for diverse applications with a high gauge factor.

14.
ACS Appl Mater Interfaces ; 7(6): 3554-61, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25632798

RESUMO

A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...